

1.1

1.2

1.2.1

1.2.2

1.2.3

1.2.4

1.3

1.3.1

1.3.2

1.3.3

1.4

1.4.1

1.4.2

1.4.3

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.6

1.6.1

1.6.2

1.7

1.7.1

1.7.2

1.7.3

1.8

1.8.1

1.8.2

1.9

Table	of	Contents
Introduction

Basics

Comments

Variables

Types

Equality

Numbers

Creation

Basic	Operators

Advanced	Operators

Strings

Creation

Concatenation

Length

Conditional	Logic

If

Else

Comparators

Concatenate

Arrays

Indices

Length

Loops

For

While

Do...While

Functions

Declare

Higher	order

Objects

2

1.9.1

1.9.2

1.9.3

1.9.4

1.9.5

1.9.6

1.9.7

1.9.8

Creation

Properties

Mutable

Reference

Prototype

Delete

Enumeration

Global	footprint

3

Learn	Javascript
This	book	will	teach	you	the	basics	of	programming	and	Javascript.	Whether	you	are	an
experienced	programmer	or	not,	this	book	is	intended	for	everyone	who	wishes	to	learn	the
JavaScript	programming	language.

JavaScript	(JS	for	short)	is	the	programming	language	that	enables	web	pages	to	respond	to
user	interaction	beyond	the	basic	level.	It	was	created	in	1995,	and	is	today	one	of	the	most
famous	and	used	programming	languages.

Introduction

4

Basics	about	Programming
In	this	first	chapter,	we'll	learn	the	basics	of	programming	and	the	Javascript	language.

Programming	means	writing	code.	A	book	is	made	up	of	chapters,	paragraphs,	sentences,
phrases,	words	and	finally	punctuation	and	letters,	likewise	a	program	can	be	broken	down
into	smaller	and	smaller	components.	For	now,	the	most	important	is	a	statement.	A
statement	is	analogous	to	a	sentence	in	a	book.	On	its	own,	it	has	structure	and	purpose,
but	without	the	context	of	the	other	statements	around	it,	it	isn't	that	meaningful.

A	statement	is	more	casually	(and	commonly)	known	as	a	line	of	code.	That's	because
statements	tend	to	be	written	on	individual	lines.	As	such,	programs	are	read	from	top	to
bottom,	left	to	right.	You	might	be	wondering	what	code	(also	called	source	code)	is.	That
happens	to	be	a	broad	term	which	can	refer	to	the	whole	of	the	program	or	the	smallest	part.
Therefore,	a	line	of	code	is	simply	a	line	of	your	program.

Here	is	a	simple	example:

var	hello	=	"Hello";

var	world	=	"World";

//	Message	equals	"Hello	World"

var	message	=	hello	+	"	"	+	world;

This	code	can	be	executed	by	another	program	called	an	interpreter	that	will	read	the	code,
and	execute	all	the	statements	in	the	right	order.

Basics

5

Comments
Comments	are	statements	that	will	not	be	executed	by	the	interpreter,	comments	are	used	to
mark	annotations	for	other	programmers	or	small	descriptions	of	what	your	code	does,	thus
making	it	easier	for	others	to	understand	what	your	code	does.

In	Javascript,	comments	can	be	written	in	2	different	ways:

Line	starting	with		//	:

//	This	is	a	comment,	it	will	be	ignored	by	the	interpreter

var	a	=	"this	is	a	variable	defined	in	a	statement";

Section	of	code	starting	with		/*	and	ending	with		*/	,	this	method	is	used	for	multi-line
comments:

/*

This	is	a	multi-line	comment,

it	will	be	ignored	by	the	interpreter

*/

var	a	=	"this	is	a	variable	defined	in	a	statement";

Exercise

Mark	the	editor's	contents	as	a	comment

Mark	me	as	a	comment

or	I'll	throw	an	error

Comments

6

Variables
The	first	step	towards	really	understanding	programming	is	looking	back	at	algebra.	If	you
remember	it	from	school,	algebra	starts	with	writing	terms	such	as	the	following.

3	+	5	=	8

You	start	performing	calculations	when	you	introduce	an	unknown,	for	example	x	below:

3	+	x	=	8

Shifting	those	around	you	can	determine	x:

x	=	8	-	3

->	x	=	5

When	you	introduce	more	than	one	you	make	your	terms	more	flexible	-	you	are	using
variables:

x	+	y	=	8

You	can	change	the	values	of	x	and	y	and	the	formula	can	still	be	true:

x	=	4

y	=	4

or

x	=	3

y	=	5

The	same	is	true	for	programming	languages.	In	programming,	variables	are	containers	for
values	that	change.	Variables	can	hold	all	kind	of	values	and	also	the	results	of
computations.	Variables	have	a	name	and	a	value	separated	by	an	equals	sign	(=).	Variable
names	can	be	any	letter	or	word,	but	bear	in	mind	that	there	are	restrictions	from	language
to	language	of	what	you	can	use,	as	some	words	are	reserved	for	other	functionality.

Variables

7

Let's	check	out	how	it	works	in	Javascript,	The	following	code	defines	two	variables,
computes	the	result	of	adding	the	two	and	defines	this	result	as	a	value	of	a	third	variable.

var	x	=	5;

var	y	=	6;

var	result	=	x	+	y;

Variables

8

Variable	types
Computers	are	sophisticated	and	can	make	use	of	more	complex	variables	than	just
numbers.	This	is	where	variable	types	come	in.	Variables	come	in	several	types	and
different	languages	support	different	types.

The	most	common	types	are:

Numbers
Float:	a	number,	like	1.21323,	4,	-33.5,	100004	or	0.123
Integer:	a	number	like	1,	12,	-33,	140	but	not	1.233

String:	a	line	of	text	like	"boat",	"elephant"	or	"damn,	you	are	tall!"
Boolean:	either	true	or	false,	but	nothing	else
Arrays:	a	collection	of	values	like:	1,2,3,4,'I	am	bored	now'
Objects:	a	representation	of	a	more	complex	object
null:	a	variable	that	contains	null	contains	no	valid	Number,	String,	Boolean,	Array,	or
Object
undefined:	the	undefined	value	is	obtained	when	you	use	an	object	property	that	does
not	exist,	or	a	variable	that	has	been	declared,	but	has	no	value	assigned	to	it.

JavaScript	is	a	“loosely	typed”	language,	which	means	that	you	don't	have	to	explicitly
declare	what	type	of	data	the	variables	are.	You	just	need	to	use	the		var		keyword	to
indicate	that	you	are	declaring	a	variable,	and	the	interpreter	will	work	out	what	data	type
you	are	using	from	the	context,	and	use	of	quotes.

Exercise

Create	a	variable	named	`a`	using	the	keyword	`var`.

Types

9

Equality
Programmers	frequently	need	to	determine	the	equality	of	variables	in	relation	to	other
variables.	This	is	done	using	an	equality	operator.

The	most	basic	equality	operator	is	the		==		operator.	This	operator	does	everything	it	can	to
determine	if	two	variables	are	equal,	even	if	they	are	not	of	the	same	type.

For	example,	assume:

var	foo	=	42;

var	bar	=	42;

var	baz	=	"42";

var	qux	=	"life";

	foo	==	bar		will	evaluate	to		true		and		baz	==	qux		will	evaluate	to		false	,	as	one	would
expect.	However,		foo	==	baz		will	also	evaluate	to		true		despite		foo		and		baz		being
different	types.	Behind	the	scenes	the		==		equality	operator	attempts	to	force	its	operands
to	the	same	type	before	determining	their	equality.	This	is	in	contrast	to	the		===		equality
operator.

The		===		equality	operator	determines	that	two	variables	are	equal	if	they	are	of	the	same
type	and	have	the	same	value.	With	the	same	assumptions	as	before,	this	means	that		foo
===	bar		will	still	evaluate	to		true	,	but		foo	===	baz		will	now	evaluate	to		false	.		baz	===
qux		will	still	evaluate	to		false	.

Equality

10

Numbers
JavaScript	has	only	one	type	of	numbers	–	64-bit	float	point.	It's	the	same	as	Java's
	double	.	Unlike	most	other	programming	languages,	there	is	no	separate	integer	type,	so	1
and	1.0	are	the	same	value.

In	this	chapter,	we'll	learn	how	to	create	numbers	and	perform	operations	on	them	(like
additions	and	subtractions).

Numbers

11

Creation
Creating	a	number	is	easy,	it	can	be	done	just	like	for	any	other	variable	type	using	the		var	
keyword.

Numbers	can	be	created	from	a	constant	value:

//	This	is	a	float:

var	a	=	1.2;

//	This	is	an	integer:

var	b	=	10;

Or	from	the	value	of	another	variable:

var	a	=	2;

var	b	=	a;

Exercise

Create	a	variable	`x`	which	equals	`10`	and	create	a	variable	`y`	which	equals	`a`.

var	a	=	11;

Creation

12

Operators
You	can	apply	mathematic	operations	to	numbers	using	some	basic	operators	like:

Addition:		c	=	a	+	b	
Subtraction:		c	=	a	-	b	
Multiplication:		c	=	a	*	b	
Division:		c	=	a	/	b	

You	can	use	parentheses	just	like	in	math	to	separate	and	group	expressions:		c	=	(a	/	b)	+
d	

Exercise

Create	a	variable	`x`	equal	to	the	sum	of	`a`	and	`b`	divided	by	`c`	and	finally	multiplied
by	`d`.

var	a	=	2034547;

var	b	=	1.567;

var	c	=	6758.768;

var	d	=	45084;

var	x	=

Basic	Operators

13

Advanced	Operators
Some	advanced	operators	can	be	used,	such	as:

Modulus	(division	remainder):		x	=	y	%	2	
Increment:	Given	a	=	5

	c	=	a++	,	Results:	c	=	5	and	a	=	6
	c	=	++a	,	Results:	c	=	6	and	a	=	6

Decrement:	Given	a	=	5
	c	=	a--	,	Results:	c	=	5	and	a	=	4
	c	=	--a	,	Results:	c	=	4	and	a	=	4

Exercise

Define	a	variable	`c`	as	the	modulus	of	the	decremented	value	of	`x`	by	3.

var	x	=	10;

var	c	=

Advanced	Operators

14

Strings
JavaScript	strings	share	many	similarities	with	string	implementations	from	other	high-level
languages.	They	represent	text	based	messages	and	data.

In	this	course	we	will	cover	the	basics.	How	to	create	new	strings	and	perform	common
operations	on	them.

Here	is	an	example	of	a	string:

"Hello	World"

Strings

15

Creation
You	can	define	strings	in	JavaScript	by	enclosing	the	text	in	single	quotes	or	double	quotes:

//	Single	quotes	can	be	used

var	str	=	'Our	lovely	string';

//	Double	quotes	as	well

var	otherStr	=	"Another	nice	string";

In	Javascript,	Strings	can	contain	UTF-8	characters:

"中文	español	English	िहĠदी	 ةیبرعلا 	português	ÊÚ¢ÑÚ	русский	日本語	������	한국어";

Note:	Strings	can	not	be	subtracted,	multiplied	or	divided.

Exercise

Create	a	variable	named	`str`	set	to	the	value	`"abc"`.

Creation

16

Concatenation
Concatenation	involves	adding	two	or	more	strings	together,	creating	a	larger	string
containing	the	combined	data	of	those	original	strings.	This	is	done	in	JavaScript	using	the	+
operator.

var	bigStr	=	'Hi	'	+	'JS	strings	are	nice	'	+	'and	'	+	'easy	to	add';

Exercise

Add	up	the	different	names	so	that	the	`fullName`	variable	contains	John's	complete
name.

var	firstName	=	"John";

var	lastName	=	"Smith";

var	fullName	=

Concatenation

17

Length
It's	easy	in	Javascript	to	know	how	many	characters	are	in	string	using	the	property
	.length	.

//	Just	use	the	property	.length

var	size	=	'Our	lovely	string'.length;

Note:	Strings	can	not	be	substracted,	multiplied	or	divided.

Exercise

Store	in	the	variable	named	`size`	the	length	of	`str`.

var	str	=	"Hello	World";

var	size	=

Length

18

Conditional	Logic
A	condition	is	a	test	for	something.	Conditions	are	very	important	for	programming,	in
several	ways:

First	of	all	conditions	can	be	used	to	ensure	that	your	program	works,	regardless	of	what
data	you	throw	at	it	for	processing.	If	you	blindly	trust	data,	you’ll	get	into	trouble	and	your
programs	will	fail.	If	you	test	that	the	thing	you	want	to	do	is	possible	and	has	all	the	required
information	in	the	right	format,	that	won’t	happen,	and	your	program	will	be	a	lot	more	stable.
Taking	such	precautions	is	also	known	as	programming	defensively.

The	other	thing	conditions	can	do	for	you	is	allow	for	branching.	You	might	have
encountered	branching	diagrams	before,	for	example	when	filling	out	a	form.	Basically,	this
refers	to	executing	different	“branches”	(parts)	of	code,	depending	on	if	the	condition	is	met
or	not.

In	this	chapter,	we'll	learn	the	base	of	conditional	logic	in	Javascript.

Conditional	Logic

19

Condition	If
The	easiest	condition	is	an	if	statement	and	its	syntax	is		if(condition){	do	this	…	}	.	The
condition	has	to	be	true	for	the	code	inside	the	curly	braces	to	be	executed.	You	can	for
example	test	a	string	and	set	the	value	of	another	string	dependent	on	its	value:

var	country	=	'France';

var	weather;

var	food;

var	currency;

if(country	===	'England')	{

				weather	=	'horrible';

				food	=	'filling';

				currency	=	'pound	sterling';

}

if(country	===	'France')	{

				weather	=	'nice';

				food	=	'stunning,	but	hardly	ever	vegetarian';

				currency	=	'funny,	small	and	colourful';

}

if(country	===	'Germany')	{

				weather	=	'average';

				food	=	'wurst	thing	ever';

				currency	=	'funny,	small	and	colourful';

}

var	message	=	'this	is	'	+	country	+	',	the	weather	is	'	+

												weather	+	',	the	food	is	'	+	food	+	'	and	the	'	+

												'currency	is	'	+	currency;

Note:	Conditions	can	also	be	nested.

Exercise

Fill	up	the	value	of	`name`	to	validate	the	condition.

var	name	=

if	(name	===	"John")	{

}

If

20

If

21

Else
There	is	also	an		else		clause	that	will	be	applied	when	the	first	condition	isn’t	true.	This	is
very	powerful	if	you	want	to	react	to	any	value,	but	single	out	one	in	particular	for	special
treatment:

var	umbrellaMandatory;

if(country	===	'England'){

				umbrellaMandatory	=	true;

}	else	{

				umbrellaMandatory	=	false;

}

The		else		clause	can	be	joined	with	another		if	.	Lets	remake	the	example	from	the
previous	article:

if(country	===	'England')	{

				...

}	else	if(country	===	'France')	{

				...

}	else	if(country	===	'Germany')	{

				...

}

Exercise

Fill	up	the	value	of	`name`	to	validate	the	`else`	condition.

var	name	=

if	(name	===	"John")	{

}	else	if	(name	===	"Aaron")	{

				//	Valid	this	condition

}

Else

22

Comparators
Lets	now	focus	on	the	conditional	part:

if	(country	===	"France")	{

				...

}

The	conditional	part	is	the	variable		country		followed	by	the	three	equal	signs	(===).	Three
equal	signs	tests	if	the	variable		country		has	both	the	correct	value	(France)	and	also	the
correct	type	(String).	You	can	test	conditions	with	double	equal	signs,	too,	however	a
conditional	such	as		if	(x	==	5)		would	then	return	true	for	both		var	x	=	5;		and		var	x	=
"5";	.	Depending	on	what	your	program	is	doing,	this	could	make	quite	a
difference.	It	is	highly	recommended	as	a	best	practice	that	you	always	compare	equality
with	three	equal	signs	(===		and		!==)	instead	of	two	(==		and		!=).

Other	conditional	test:

	x	>	a	:	is	x	bigger	than	a?
	x	<	a	:	is	x	less	than	a?
	x	<=	a	:	is	x	less	than	or	equal	to	a?
	x	>=a	:	is	x	greater	than	or	equal	to	a?
	x	!=	a	:	is	x	not	a?
	x	:	does	x	exist?

Exercise

Add	a	condition	to	change	the	value	of	`a`	to	the	number	10	if	`x`	is	bigger	than	5.

var	x	=	6;

var	a	=	0;

Logical	Comparison
In	order	to	avoid	the	if-else	hassle,	simple	logical	comparisons	can	be	utilised.

var	topper	=	(marks	>	85)	?	"YES"	:	"NO";

Comparators

23

In	the	above	example,		?		is	a	logical	operator.	The	code	says	that	if	the	value	of	marks	is
greater	than	85	i.e.		marks	>	85		,	then		topper	=	YES		;	otherwise		topper	=	NO		.
Basically,	if	the	comparison	condition	proves	true,	the	first	argument	is	accessed	and	if	the
comparison	condition	is	false	,	the	second	argument	is	accessed.

Comparators

24

Concatenate	conditions
Furthermore	you	can	concatenate	different	conditions	with	"or”	or	“and”	statements,	to	test
whether	either	statement	is	true,	or	both	are	true,	respectively.

In	JavaScript	“or”	is	written	as		||		and	“and”	is	written	as		&&	.

Say	you	want	to	test	if	the	value	of	x	is	between	10	and	20—you	could	do	that	with	a
condition	stating:

if(x	>	10	&&	x	<	20)	{

				...

}

If	you	want	to	make	sure	that	country	is	either	“England”	or	“Germany”	you	use:

if(country	===	'England'	||	country	===	'Germany')	{

				...

}

Note:	Just	like	operations	on	numbers,	Condtions	can	be	grouped	using	parenthesis,	ex:		if
((name	===	"John"	||	name	===	"Jennifer")	&&	country	===

"France")	.

Exercise

Fill	up	the	2	conditions	so	that	`primaryCategory`	equals	`"E/J"`	only	if	name	equals
`"John"`	and	country	is	`"England"`,	and	so	that	`secondaryCategory`	equals	`"E|J"`	only
if	name	equals	`"John"`	or	country	is	`"England"`

var	name	=	"John";

var	country	=	"England";

var	primaryCategory,	secondaryCategory;

if	(/*	Fill	here	*/)	{

				primaryCategory	=	"E/J";

}

if	(/*	Fill	here	*/)	{

				secondaryCategory	=	"E|J";

}

Concatenate

25

Concatenate

26

Arrays
Arrays	are	a	fundamental	part	of	programming.	An	array	is	a	list	of	data.	We	can	store	a	lot
of	data	in	one	variable,	which	makes	our	code	more	readable	and	easier	to	understand.	It
also	makes	it	much	easier	to	perform	functions	on	related	data.

The	data	in	arrays	are	called	elements.

Here	is	a	simple	array:

//	1,	1,	2,	3,	5,	and	8	are	the	elements	in	this	array

var	numbers	=	[1,	1,	2,	3,	5,	8];

Arrays

27

Indices
So	you	have	your	array	of	data	elements,	but	what	if	you	want	to	access	a	specific	element?
That	is	where	indices	come	in.	An	index	refers	to	a	spot	in	the	array.	indices	logically
progress	one	by	one,	but	it	should	be	noted	that	the	first	index	in	an	array	is	0,	as	it	is	in
most	languages.	Brackets	[]	are	used	to	signify	you	are	referring	to	an	index	of	an	array.

//	This	is	an	array	of	strings

var	fruits	=	["apple",	"banana",	"pineapple",	"strawberry"];

//	We	set	the	variable	banana	to	the	value	of	the	second	element	of

//	the	fruits	array.	Remember	that	indices	start	at	0,	so	1	is	the

//	second	element.	Result:	banana	=	"banana"

var	banana	=	fruits[1];

Exercise

Define	the	variables	using	the	indices	of	the	array

var	cars	=	["Mazda",	"Honda",	"Chevy",	"Ford"]

var	honda	=

var	ford	=

var	chevy	=

var	mazda	=

Indices

28

Length
Arrays	have	a	property	called	length,	and	it's	pretty	much	exactly	as	it	sounds,	it's	the	length
of	the	array.

var	array	=	[1	,	2,	3];

//	Result:	l	=	3

var	l	=	array.length;

Exercise

Define	the	variable	a	to	be	the	number	value	of	the	length	of	the	array

var	array	=	[1,	1,	2,	3,	5,	8];

var	l	=	array.length;

var	a	=

Length

29

Loops
Loops	are	repetitive	conditions	where	one	variable	in	the	loop	changes.	Loops	are	handy,	if
you	want	to	run	the	same	code	over	and	over	again,	each	time	with	a	different	value.

Instead	of	writing:

doThing(cars[0]);

doThing(cars[1]);

doThing(cars[2]);

doThing(cars[3]);

doThing(cars[4]);

You	can	write:

for	(var	i=0;	i	<	cars.length;	i++)	{	

				doThing(cars[i]);

}

Loops

30

For	Loop
The	easiest	form	of	a	loop	is	the	for	statement.	This	one	has	a	syntax	that	is	similar	to	an	if
statement,	but	with	more	options:

for(condition;	end	condition;	change){

				//	do	it,	do	it	now

}

Lets	for	example	see	how	to	execute	the	same	code	ten-times	using	a		for		loop:

for(var	i	=	0;	i	<	10;	i	=	i	+	1){

				//	do	this	code	ten-times

}

Note:		i	=	i	+	1		can	be	written		i++	.

Exercise

Using	a	for-loop,	create	a	variable	named	`message`	that	equals	the	concatenation	of
integers	(0,	1,	2,	...)	from	0	to	99.

var	message	=	"";

For

31

While	Loop
While	Loops	repetitively	execute	a	block	of	code	as	long	as	a	specified	condition	is	true.

while(condition){

				//	do	it	as	long	as	condition	is	true

}

For	example,	the	loop	in	this	example	will	repetitively	execute	its	block	of	code	as	long	as
the	variable	i	is	less	than	5:

var	i	=	0,	x	=	"";

while	(i	<	5)	{

				x	=	x	+	"The	number	is	"	+	i;

				i++;

}

The	Do/While	Loop	is	a	variant	of	the	while	loop.	This	loop	will	execute	the	code	block	once
before	checking	if	the	condition	is	true.	It	then	repeats	the	loop	as	long	as	the	condition	is
true:

do	{

				//	code	block	to	be	executed

}	while	(condition);

Note:	Be	careful	to	avoid	infinite	looping	if	the	condition	is	always	true!

Exercise

Using	a	while-loop,	create	a	variable	named	`message`	that	equals	the	concatenation	of
integers	(0,	1,	2,	...)	as	long	as	its	length	(`message.length`)	is	less	than	100.

var	message	=	"";

While

32

Do...While	Loop
The	do...while	statement	creates	a	loop	that	executes	a	specified	statement	until	the	test
condition	evaluates	to	be	false.	The	condition	is	evaluated	after	executing	the	statement.
Syntax	for	do...	while	is

do{

				//	statement

}

while(expression)	;

Lets	for	example	see	how	to	print	numbers	less	than	10	using		do...while		loop:

var	i	=	0;

do	{

				document.write(i	+	"	");

				i++;	//	incrementing	i	by	1		

}	while	(i	<	10);

Note:		i	=	i	+	1		can	be	written		i++	.

Exercise

Using	a	do...while-loop,	print	numbers	between	less	than	5.

var	i	=	0;

Do...While

33

Functions
Functions,	are	one	of	the	most	powerful	and	essential	notions	in	programming.

Functions	like	mathematical	functions	perform	transformations,	they	take	input	values	called
arguments	and	return	an	output	value.

Functions

34

Declaring	Functions
Functions,	like	variables,	must	be	declared.	Let's	declare	a	function		double		that	accepts	an
argument	called		x		and	returns	the	double	of	x	:

function	double(x)	{

				return	2	*	x;

}

Note:	the	function	above	may	be	referenced	before	it	has	been	defined.

Functions	are	also	values	in	JavaScript;	they	can	be	stored	in	variables	(just	like	numbers,
strings,	etc	...)	and	given	to	other	functions	as	arguments	:

var	double	=	function(x)	{

				return	2	*	x;

};

Note:	the	function	above	may	not	be	referenced	before	it	is	defined,	just	like	any	other
variable.

Exercise

Declare	a	function	named	`triple`	that	takes	an	argument	and	returns	its	triple.

Declare

35

Higher	Order	Functions
Higher	order	functions	are	functions	that	manipulate	other	functions.	For	example,	a	function
can	take	other	functions	as	arguments	and/or	produce	a	function	as	its	return	value.	Such
fancy	functional	techniques	are	powerful	constructs	available	to	you	in	JavaScript	and	other
high-level	languages	like	python,	lisp,	etc.

We	will	now	create	two	simple	functions,		add_2		and		double	,	and	a	higher	order	function
called		map	.		map		will	accept	two	arguments,		func		and		list		(its	declaration	will	therefore
begin		map(func,list)),	and	return	an	array.		func		(the	first	argument)	will	be	a	function	that
will	be	applied	to	each	of	the	elements	in	the	array		list		(the	second	argument).

//	Define	two	simple	functions

var	add_2	=	function(x)	{

				return	x	+	2;

};

var	double	=	function(x)	{

				return	2	*	x;

};

//	map	is	cool	function	that	accepts	2	arguments:

//		func				the	function	to	call

//		list				a	array	of	values	to	call	func	on

var	map	=	function(func,	list)	{

				var	output=[];														//	output	list

				for(idx	in	list)	{

								output.push(func(list[idx]));

				}

				return	output;

}

//	We	use	map	to	apply	a	function	to	an	entire	list

//	of	inputs	to	"map"	them	to	a	list	of	corresponding	outputs

map(add_2,	[5,6,7])	//	=>	[7,	8,	9]

map(double,	[5,6,7])	//	=>	[10,	12,	14]

The	functions	in	the	above	example	are	simple.	However,	when	passed	as	arguments	to
other	functions,	they	can	be	composed	in	unforeseen	ways	to	build	more	complex	functions.

For	example,	if	we	notice	that	we	use	the	invocations		map(add_2,	...)		and		map(double,
...)		very	often	in	our	code,	we	could	decide	we	want	to	create	two	special-purpose	list
processing	functions	that	have	the	desired	operation	baked	into	them.	Using	function
composition,	we	could	do	this	as	follows:

Higher	order

36

process_add_2	=	function(list)	{

				return	map(add_2,	list);

}

process_double	=	function(list)	{

				return	map(double,	list);

}

process_add_2([5,6,7])	//	=>	[7,	8,	9]

process_double([5,6,7])	//	=>	[10,	12,	14]

Now	let's	create	a	function	called		buildProcessor		that	takes	a	function		func		as	input	and
returns	a		func	-processor,	that	is,	a	function	that	applies		func		to	each	input	in	list.

//	a	function	that	generates	a	list	processor	that	performs

var	buildProcessor	=	function(func)	{

				var	process_func	=	function(list)	{

								return	map(func,	list);

				}

				return	process_func;

}

//	calling	buildProcessor	returns	a	function	which	is	called	with	a	list	input

//	using	buildProcessor	we	could	generate	the	add_2	and	double	list	processors	as	foll

ows:

process_add_2	=	buildProcessor(add_2);

process_double	=	buildProcessor(double);

process_add_2([5,6,7])	//	=>	[7,	8,	9]

process_double([5,6,7])	//	=>	[10,	12,	14]

Let's	look	at	another	example.	We'll	create	a	function	called		buildMultiplier		that	takes	a
number		x		as	input	and	returns	a	function	that	multiplies	its	argument	by		x		:

var	buildMultiplier	=	function(x)	{

				return	function(y)	{

								return	x	*	y;

				}

}

var	double	=	buildMultiplier(2);

var	triple	=	buildMultiplier(3);

double(3);	//	=>	6

triple(3);	//	=>	9

Exercise

Higher	order

37

Define	a	function	named	`negate`	that	takes	`add1`	as	argument	and	returns	a	function,
that	returns	the	negation	of	the	value	returned	by	`add1`.	(Things	get	a	bit	more
complicated	;))

var	add1	=	function	(x)	{

				return	x	+	1;

};

var	negate	=	function(func)	{

				//	TODO

};

//	Should	return	-6

//	Because	(5+1)	*	-1	=	-6

negate(add1)(5);

Higher	order

38

Objects
The	primitive	types	of	JavaScript	are		true	,		false	,	numbers,	strings,		null		and
	undefined	.	Every	other	value	is	an		object	.

In	JavaScript	objects	contain		propertyName	:		propertyValue		pairs.

Objects

39

Creation
There	are	two	ways	to	create	an		object		in	JavaScript:

1.	 literal

	var	object	=	{};

			//	Yes,	simply	a	pair	of	curly	braces!

Note:	this	is	the	recomended	way.

2.	 and	object-oriented

	var	object	=	new	Object();

Note:	it's	almost	like	Java.

Creation

40

Properties
Object's	property	is	a		propertyName	:		propertyValue		pair,	where	property	name	can	be
only	a	string.	If	it's	not	a	string,	it	gets	casted	into	a	string.	You	can	specify	properties	when
creating	an	object	or	later.	There	may	be	zero	or	more	properties	separated	by	commas.

var	language	=	{

				name:	'JavaScript',

				isSupportedByBrowsers:	true,

				createdIn:	1995,

				author:{

								firstName:	'Brendan',

								lastName:	'Eich'

				},

	//	Yes,	objects	can	be	nested!

				getAuthorFullName:	function(){

								return	this.author.firstName	+	"	"	+	this.author.lastName;				

				}

	//	Yes,	functions	can	be	values	too!

};

The	following	code	demonstates	how	to	get	a	property's	value.

var	variable	=	language.name;

	//	variable	now	contains	"JavaScript"	string.

				variable	=	language['name'];

	//	The	lines	above	do	the	same	thing.	The	difference	is	that	the	second	one	lets	you	

use	litteraly	any	string	as	a	property	name,	but	it's	less	readable.	

				variable	=	language.newProperty;	

	//	variable	is	now	undefined,	because	we	have	not	assigned	this	property	yet.

The	following	example	shows	how	to	add	a	new	property	or	change	an	existing	one.

language.newProperty	=	'new	value';

	//	Now	the	object	has	a	new	property.	If	the	property	already	exists,	its	value	will	

be	replaced.

language['newProperty']	=	'changed	value';

	//	Once	again,	you	can	access	properties	both	ways.	The	first	one	(dot	notation)	is	r

ecomended.

Properties

41

Mutable
The	difference	between	objects	and	primitive	values	is	that	we	can	change	objects,
whereas	primitive	values	are	immutable.

var	myPrimitive	=	"first	value";

				myPrimitive	=	"another	value";

	//	myPrimitive	now	points	to	another	string.

var	myObject	=	{	key:	"first	value"};

				myObject.key	=	"another	value";

	//	myObject	points	to	the	same	object.

Mutable

42

Reference
Objects	are	never	copied.	They	are	passed	around	by	reference.

//	Imagine	I	had	a	pizza

var	myPizza	=	{slices:	5};

	//	And	I	shared	it	with	You

var	yourPizza	=	myPizza;

	//	I	eat	another	slice

myPizza.slices	=	myPizza.slices	-	1;

var	numberOfSlicesLeft	=	yourPizza.slices;

	//	Now	We	have	4	slices	because	myPizza	and	yourPizza

	//	reference	to	the	same	pizza	object.

var	a	=	{},	b	=	{},	c	=	{};

	//	a,	b,	and	c	each	refer	to	a

	//	different	empty	object

a	=	b	=	c	=	{};

	//	a,	b,	and	c	all	refer	to

	//	the	same	empty	object

Reference

43

Prototype
Every	object	is	linked	to	a	prototype	object	from	which	it	inherits	properties.

All	objects	created	from	object	literals	({})	are	automatically	linked	to	Object.prototype,
which	is	an	object	that	comes	standard	with	JavaScript.

When	a	JavaScript	interpreter	(a	module	in	your	browser)	tries	to	find	a	property,	which	You
want	to	retrieve,	like	in	the	following	code:

var	adult	=	{age:	26},

				retrievedProperty	=	adult.age;

	//	The	line	above

First,	the	interpreter	looks	through	every	property	the	object	itself	has.	For	example,		adult	
has	only	one	own	property	—		age	.	But	besides	that	one	it	actually	has	a	few	more
properties,	which	were	inherited	from	Object.prototype.

var	stringRepresentation	=	adult.toString();

	//	the	variable	has	value	of	'[object	Object]'

	toString		is	an	Object.prototype's	property,	which	was	inherited.	It	has	a	value	of	a	function,
which	returns	a	string	representation	of	the	object.	If	you	want	it	to	return	a	more	meaningful
representation,	then	you	can	override	it.	Simply	add	a	new	property	to	the	adult	object.

adult.toString	=	function(){

				return	"I'm	"+this.age;

}

If	you	call	the		toString		function	now,	the	interpreter	will	find	the	new	property	in	the	object
itself	and	stop.

Thus	the	interpreter	retrieves	the	first	property	it	will	find	on	the	way	from	the	object	itself	and
further	through	its	prototype.

To	set	your	own	object	as	a	prototype	instead	of	the	default	Object.prototype,	you	can	invoke
	Object.create		as	follows:

Prototype

44

var	child	=	Object.create(adult);

	/*	This	way	of	creating	objects	lets	us	easily	replace	the	default	Object.prototype	w

ith	the	one	we	want.	In	this	case,	the	child's	prototype	is	the	adult	object.	*/

child.age	=	8;

	/*	Previously,	child	didn't	have	its	own	age	property,	and	the	interpreter	had	to	loo

k	further	to	the	child's	prototype	to	find	it.

	Now,	when	we	set	the	child's	own	age,	the	interpreter	will	not	go	further.

	Note:	adult's	age	is	still	26.	*/

var	stringRepresentation	=	child.toString();

	//	The	value	is	"I'm	8".

	/*	Note:	we	have	not	overridden	the	child's	toString	property,	thus	the	adult's	metho

d	will	be	invoked.	If	adult	did	not	have	toString	property,	then	Object.prototype's	to

String	method	would	be	invoked,	and	we	would	get	"[object	Object]"	instead	of	"I'm	8"	

*/

	child	's	prototype	is		adult	,	whose	prototype	is		Object.prototype	.	This	sequence	of
prototypes	is	called	prototype	chain.

Prototype

45

Delete
	delete		can	be	used	to	remove	a	property	from	an	object.	It	will	remove	a	property	from
the	object	if	it	has	one.	It	will	not	look	further	in	the	prototype	chain.	Removing	a	property
from	an	object	may	allow	a	property	from	the	prototype	chain	to	shine	through:

var	adult	=	{age:26},

				child	=	Object.create(adult);

				child.age	=	8;

delete	child.age;

	/*	Remove	age	property	from	child,	revealing	the	age	of	the	prototype,	because	then	i

t	is	not	overriden.	*/

var	prototypeAge	=	child.age;

	//	26,	because	child	does	not	have	its	own	age	property.

Delete

46

Enumeration
The		for	in		statement	can	loop	over	all	of	the	property	names	in	an	object.	The
enumeration	will	include	functions	and	prototype	properties.

var	fruit	=	{

				apple:	2,

				orange:5,

				pear:1

},

sentence	=	'I	have	',

quantity;

for	(kind	in	fruit){

				quantity	=	fruit[kind];

				sentence	+=	quantity+'	'+kind+

																(quantity===1?'':'s')+

																',	';

}

	//	The	following	line	removes	the	trailing	coma.

sentence	=	sentence.substr(0,sentence.length-2)+'.';

	//	I	have	2	apples,	5	oranges,	1	pear.

Enumeration

47

Global	footprint
If	you	are	developing	a	module,	which	might	be	running	on	a	web	page,	which	also	runs
other	modules,	then	you	must	beware	the	variable	name	overlapping.

Suppose	we	are	developing	a	counter	module:

var	myCounter	=	{

				number	:	0,

				plusPlus	:	function(){

								this.number	:	this.number	+	1;

				},

				isGreaterThanTen	:	function(){

								return	this.number	>	10;

				}

}

Note:	this	technique	is	often	used	with	closures,	to	make	the	internal	state	immutable
from	the	outside.

The	module	now	takes	only	one	variable	name	—		myCounter	.	If	any	other	module	on	the
page	makes	use	of	such	names	like		number		or		isGreaterThanTen		then	it's	perfectly	safe,
because	we	will	not	override	each	others	values;

Global	footprint

48

	Introduction
	Basics
	Comments
	Variables
	Types
	Equality

	Numbers
	Creation
	Basic Operators
	Advanced Operators

	Strings
	Creation
	Concatenation
	Length

	Conditional Logic
	If
	Else
	Comparators
	Concatenate

	Arrays
	Indices
	Length

	Loops
	For
	While
	Do...While

	Functions
	Declare
	Higher order

	Objects
	Creation
	Properties
	Mutable
	Reference
	Prototype
	Delete
	Enumeration
	Global footprint

